Radio wavefront shape of cosmic ray air showers

Arthur Corstanje

Radboud University Nijmegen

for the LOFAR Key Science Project Cosmic Rays

LOFAR Community Science Workshop, April 9, 2014

Radio pulses from cosmic rays

Short (10 ns) pulses from cosmic-ray particles > ~ $10^{17} \mathrm{eV}$

In 200-400 LOFAR antennas on the ground, we measure:

- Lateral distribution of
- Signal power
- Signal arrival time > Wavefront shape
- Spectrum / pulse shape
- Polarization
- Wavefront shape measurements

Wavefront at actual aspect ratio

Snapshot at the moment wavefront touches ground
Angle with shower plane $\sim 0.8^{\circ}$

Arrival times for a cosmic ray

Measuring arrival time of pulse in individual antennas:

- Time series signal Apply Hilbert transform to get Hilbert envelope
- Envelope maximum is 'the arrival time'

$$
\sigma_{t}=\frac{12.7}{S N R} \mathrm{~ns}<5 \mathrm{~ns}!
$$

Arrival times for a cosmic ray

Arrival times after subtracting plane-wave solution

Corstanje et al., to be submitted to Astroparticle Physics

Toy model for wavefront shape

- A point source moving at $v=c$
- Emitting radiation for a limited time
- Medium has refractive index n
- Waves propagate at $v=c / n$
- Emission all the way to the ground: conical shape

Toy model for wavefront shape

- A point source moving at $v=c$
- Emitting radiation for a limited time
- Medium has refractive index n
- Waves propagate at $v=c / n$
- Emission stops before ground: hyperbolic(-like) shape

Toy model for wavefront shape

- A point source moving at $v=c$
- Emitting radiation for a limited time
- Medium has refractive index n
- Waves propagate at $v=c / n$
- Emission only very far from ground: spherical shape

Shower plane projection

Shower plane

- Project antennas into shower plane
- Shower axis position
- Shower axis direction
- Unknown: free fit parameters
- Wavefront: arrival times as function of distance from shower axis
- Nested fitting (7 params):
- Optimize shower core position
- Optimize axis direction
- Optimize curve-fit

Best-fitting conical shape

Corstanje et al., to be submitted to Astroparticle Physics

Best-fitting spherical shape

Corstanje et al., to be submitted to Astroparticle Physics

Best-fitting hyperbolic shape

Corstanje et al., to be submitted to Astroparticle Physics

Another example

Conical-shaped example

Improved angular resolution

Corstanje et al., to be submitted to Astroparticle Physics

- Using hyperbolic wavefront improves directional accuracy
- About 1 degree difference
- Difference with conical shape
~ 0.1 degree

Elevation angle dependence

- Time lag at 100 m from shower axis of best-fitting hyperboloid
- Weak correlation with elevation angle
- Uncertainty in shower core position

Conclusions and outlook

- Wavefront timing measured with accuracy better than 1 ns per antenna
- A hyperboloid clearly fits best; no significant structure in residuals
- Significant spread between events, well resolved
- Arrival direction more accurately fitted using hyperboloid wavefront (to ~ 0.1 deg)
- Compare with simulations to get more accurate shower core position, and correlate with Xmax and particle type

